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RECENT ADVANCES AND FUTURE PROSPECTS FOR MONTE CARLO 

Forrest B. BROWN 

Los Alamos National LaboratOlY, Los Alamos, NM. 87545, USA 

The history of Monte Carlo methods is closely linked to that of computers: The first known Monte Carlo ~rogram 
was written in 1947 for the EN lAC; a pre-release of the first Fortran compiler was used for Mon~e Carlo In 1957; 
Monte Carlo codes were adapted to vector computers in the I 980s, clusters and parallel computers In the 199.0s, and 
teraflop systems in the 2000s. Recent advances include hierarchical parallelism, combini.ng threaded calculatIOns on 
multicore processors with message-passing among different nodes. WIth . the advances In computmg, Monte Carlo 
codes have evolved with new capabilities and new ways of use. ProductIon codes such as MCNP, MYP, MONK, 
TRIPOLI and SCALE are now 20-30 years old (or more) and are very rich in advanced featUres. The former 
"method 'Of last resort" has now become the first choice for many applications. Calculations are now routmely 
performed on office computers, not just on supercomputers. Current research and development efforts ~re 

investigating the use of Monte Carlo methods on FPGAs. GPUs, and many-core processors. Other far-reachmg 
research is exploring ways to adapt Monte Carlo methods to future exaflop systems that may have 1 M or more 
concurrent computational processes. 
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I. The First 60 Years of Monte Carlo Codes 

The history of Monte Carlo methods is closely linked to 
that of computers: 

The name itself comes from the Manhattan Project in 
1945 1

) . The first electronic computer - the ENIAC - was 
nearing completion and was the subject of much discussion 
among Stan Ulam, John von Neumann, Nicholas Metropolis, 
and others. The proposal to use the ENIAC for the statistical 
method lied Metropolis to suggest the name "Monte Carlo." 

During 1947, von N eumann2
) developed the first known 

computer program for performing Monte Carlo calculations. 
The description of the program logic is remarkably similar to 
what is still done today in modern Monte Carlo codes. (In 
fact, portions of MCNP coding appear to have originated 
from von Neumann ' s program, migrated through several 
generations of assembly language and Fortran .) In describing 
the program, von Neumann estimated that 100 neutrons with 
100 collisions would take 5 hours on the ENIAC (with its 
18,000 vacuum tubes). Today that would take milliseconds. 
The first symposium on the Monte Carlo method was held in 
1949. 

The first Monte Carlo codes were written in the 1940-50s 
in very low-level languages (e .g., machine language, 
assembler, FLOCO, etc.). In 1957, a pre-release of the first 
Fortran compiler developed at IBM arrived at the Bettis 
laboratory3) (2,000 punched cards for a binary image of the 
compiler). The very first program tested failed due to a 
program syntax error, perhaps the first case of user 
frustration and debugging with Fortran, but then successfully 
compiled and executed on an IBM 704. Lew Ondis began 
using the new compiler for Monte Carlo codes. 

During the 1960-80s, extensive capabilities were added to 

Monte Carlo codes running on mainframe computers (e.g .. 
CDC-6600, CDC-7600, Cray-I, etc.), often involving drums, 
extended core memory devices, disks, and punched cards. In 
the 1980s, a few codes were developed for vector 
computers4

,5,6) and then extended to parallel/vector 
computers such as the Cray-XMP, -YMP, -C90, -J90 series. 
During the 1990s, paraliel Monte Carlo became 
commonplace due to the arrival of workstation clusters and 
modestly priced parallel systems. Early parallel 
computations typically used 4 or 8 processors at first, and 
then dozens of processors connected via PYM or MPI 
message-passing. During the 2000s, Monte Carlo parallelism 
was extended to I ODs and 1000s of processors. 

With the arrival of multicore processors in the 2000s, 
some Monte Carlo codes were adapted to use threaded 
parallelism, using pthreads, OpenMP, or vendor-specific 
pragmas. With care, local parallelism using threading on 
mu Iticore processors can be combined with global 

I·· . d 7) At paralle Ism usmg message-passmg among 111 0 es . a 
higher level , independent Monte Carlo jobs can be run 
concurrently, combining results later Uob parallelism). Such 
hierarchical parallelism - parallel jobs, message-passing, 
multicore threading - is necessary to fu]lly utilize today's 
largest teraflop and petaflop computing systems. Monte 
Carlo calculations have been run using 10,000s of 
processors. 

Perhaps more significant is the tremendous growth in 
power of office computers and laptops. These have 
progressed from Kflops in the 1990s to Mflops in the 2000s, 
to Gflops today, with multicore processors in all current 
laptops and office computers. Today's laptops outperfonn 
supercomputers of the 1990s, so that Monte Carlo codes can 
now be easily used by anyone. This step change in 



accessibility has led to routine use of Monte Carlo by 
students, researchers, and engineers. 

The tremendous growth in computer capabilities has 
facilitated the development of new features and techniques 
in Monte Carlo codes. Over the past 63 years of methods and 
code development for Monte Carlo, there has been steady 
progress in all areas: Geometry modeling capabilities began 
with a dozen or fewer regions, then grew to a few 1000s in 
the I 970s, 10-lOOK in the 1990s, and now to millions or 
more in some codes. The introduction of hierarchical 
geometry (i.e., embedded geometry, " holes", " universes", 
etc.) has enabled large models with reusable geometry parts . 
Physics interaction data as provided by libraries of nuclear 
cross-sections has likewise grown from nonexistent to the 
current ENDF/B-VII libraries that can require gigabytes of 
storage. 

The past 63 years of Monte Carlo history represent a huge 
investment in the research and development of random 
number generators, random sampling methods, criticality 
calculation methods, variance reduction techniques, physics 
interaction modeling, geometric ray-tracing, parallel 
computing methods, physics interaction data libraries, and 
code development. Of even more significance is the very 
large effort devoted to the verification and va I idation of 
Monte Carlo codes. As a result of the huge investment of 
resources, a number of long-lived and respected Monte 
Carlo codes are available: MCNP, MVP, MONK, TRIPOLI, 
SCALE, and many others. These codes are 20-30 years old 
(or more) and have extensive modeling and analysis 
capabilities that have undergone many years of use and 
testing. They represent a formidable level of capabilities that 
new or future codes must surpass to achieve widespread, 
general-purpose use. 

The combination of realistic and detailed geometry and 
cross-sections, essentially model ing everyth ing with high 
precision, has motivated more users to apply Monte Carlo to 
their problems. It is common today for analysts to run 
billions of particles for a problem, rather than the millions or 
thousands of a decade ago . 

n. The Next Years of Monte Carlo Codes 

In the previous section, the maturity and rich list of 
features in today ' s most-used Monte Carlo codes were cited 
as distinct benefits of the past 63 years of Monte Carlo 
development. Extending those Monte Carlo codes with ever 
more features over the years has a cost, however. As 
software packages become larger, the burden for 
maintenance, documentation, user support, and verification 
and validation grows excessively. After 20-30 years of 
adding new features, new development is impeded by older 
code structure and logic, obsolete data structures, and coding 
style that often resembles assembly language. The 
algorithms and data structures in many mature codes were 
first developed for problems with only a dozen or so regions 
and materials . While the codes have been (painfully) 
modified over the years to now handle many 1000s of 
materials and regions, extension to millions or billions of 

materials and regions is difficult. Rewriting the older, mature 
Monte Carlo codes in a modern form without sacrificing 
existing capabi lities is an expensive endeavor8

), seldom 
accomplished . For effective use on today' s large HPC 
systems, many new Monte Carlo codes are being developed 
to take full advantage of the new architectures. Such codes 
as SERPENT, MC21, McCARD, MCP, Monaco, GMVP, 
and many others are newer and more readily adapted to 
large-scale applications. In the near future, these codes will 
most likely focus on the hierarchical parallelism developed 
in the 2000s, with threading on multicore nodes and MPI 
message-passing among nodes. Currently available HPC 
systems support up to 16 threads per node, with 1,000s of 
nodes. Within the next few years, the number of threads per 
node will rise dramatically - initial testing is underway for 
manycore processors with 32,48, 80 and more cores. 

An alternative approach to clusters of multicore or 
manycore nodes is heterogeneous computing systems, with 
some specialized hardware processors included either 
independently or attached to conventional cpus. Examples 
include FPGAs, GPUs, GPGPUs, and Cell processors. This 
type of special purpose processor was originally used solely 
for graphics support and visualization, and typically utilizes 
pipelined or vector functional units, with additional 
parallelism from replicated functional units. The capabilities 
of these GPGPU processors have grown rapidly in the last 
few years, leading to significant gains in speed if a 
calculation can be cast in vector form . Since vectorization of 
Monte Carlo was proven 30 years ag04

•
5
), it would appear 

straightforward. In practice, however, existing mature codes 
would have to be entirely restructured and large'ly rewritten 
to take advantage of vectorization; that ·is prohibitively 
expensive and would invalidate many years of verification 
and validation work . New or future Monte Carlo codes show 
the most promise for utilizing GPGPUs, since algorithms 
and data structures are flexible when developing new codes. 
Some of these efforts are showing excellent results9

). It 
should be noted that determining the effectiveness of 
GPGPUs in speeding up Monte Carlo is difficult. Often the 
GPGPU timings are compared to single-threaded runs on a 
conventional processor, when they should more realistically 
be compared to threaded calculations. 

In addition to Monte Carlo development to leverage the 
advances in computing, there is an abundance of methods 
development in progress, enabled by the higher speeds and 
larger memories. These efforts include: (l) New adjoint
weighted tally schemes for continuous-energy Monte Carlo 
criticality calculations 10), permitting correct calculation of 
reactor kinetics parameters, perturbations in reaction rates, 
and sensitivity-uncertainty parameters. (2) New iteration 
methods for criticality calculations, such as Wielandt's 
method II), that may accelerate convergence and eliminate 
the underprediction bias in uncertainties. (3) On-the-fly 
Doppler broadening of neutron cross-sectionsI 2

), to finally 
permit a continuous distribution of material temperatures . (4) 
New types of tallies, such as Kernel Density Estimators 
(KDE) 13) and functional expansion tallies (FET) 14), that 
permit continuous variation over regions, rather than just 
simple averages. (5) Depletion analysis of fuel assemb'lies 



and reactors l5.161, including equilibrium Xenon and control 
searches. (6) All-particle, all-energy Monte Carlo codes I7

). 

(7) Stochastic geometryl8) for modeling the random locations 
of fuel particles in newer reactor fuel systems. (8) Improved 
treatment of the free-gas scattering model at epithermal 
neutron energies 19) to include important resonance scattering 
effects . (9) Coupled calculations involving both Monte Carlo 
and deterministic transport codes20

) to enable more effective 
variance reduction. There are many more such efforts in 
progress. 

Ill. Future Prospects for Monte Carlo Codes 

High performance computing systems have evolved from 
Mtlops in the 1980s, to Gtlops in the 1990s, to Ttlops in the 
2000s, and now to Ptlops in the 20 lOs. Each jump in 
performance was enabled by a combination of advances in 
integrated circuit design and fabrication, changes in system 
architecture, and new software technology. There are 
currently intense efforts21

) to continue the trend and provide 
exaflop performance by 2020. While specific system 
characteristics and architecture for exaflop systems are still 
under investigation, several broad predictions can be made: 

(1) There will be massive parallelism, with 1-100 M cpu
cores. None of the scientific and engineering software in use 
today can be scaled to such extreme processor counts. The 
only way to fully utilize the massive parallelism on exaflop 
systems with today's software is to run many 1,000s or more 
parallel jobs. This approach to exascale computing would 
support parameter studies, where very large numbers of jobs 
are run with different combinations of code input parameters 
to span the phase space of a multidimensional problem. It 
would also support uncertainty quantification analysis, 
where very many individual code input parameters are 
varied in separate calculations to assess the sensitivity of 
problem results to uncertainties in the code input parameters 
and then estimate the overall uncertainty on calculation of a 
physical problem. The running of many 1,000s of parallel 
jobs, however, would not impact the running time of a single 
job and would do little for the day to day work of most 
engineers and scientists. To take advantage of exaflop 
computing power for single jobs, changes in today's 
software are required. 

(2) One of the key considerations in designing future 
exaflop systems is greatly reducing the power consumption 
per compute node. (With today's technology, an exaflop 
system might consume as much as 500 MW, clearly 
prohibitive.) Large reductions in power requirements imply 
that future cpu clock cycles may be little different from those 
oftoday's cpus, and that the amount of memory per cpu-core 
may even be smaller than today. The coming limits on or 
reduction in memory per cpu-core will have a huge impact 
on software development. (As a current example, consider 
MCNP5 and the first IBM BlueGene systems. Even though 
MCNP5 supports hierarchical parallelism at the job, 
message-passing, and threading levels, and has been run 
with 10Ks of cpu-cores, it was unable to run on the first 
BlueGene systems due to the very limited amount of 
memory per cpu-core.) Changes in software are needed to 

accommodate the expected reduction in memory per cpu
core. Large datasets required for a calculation will need to be 
distributed across many nodes, and codes will need to 
remotely access the distributed data. Latencies imposed by 
remote data access will need to be masked by executing even 
more threads than there are cpu-cores (much like the 
hyperthreading done today on single cores), leading to even 
more parallel processes. 

(3) Distributing large datasets across nodes and remotely 
accessing the data has even further implications for code 
developers . While many large datasets are read-only, such as 
material properties, nuclear cross-sections, and geometry 
descriptions, other datasets require read-write access. For 
Monte Carlo codes in particular, the tally data may comprise 
a very large dataset that needs to be accessed by all 
individual particle history compute nodes. In today ' s codes 
tally data is retrieved from memory, a particle's contribution 
is added to the data, and then the data is stored back into 
memory. The particular tally location being modified must 
be locked (or replicated) to permit only one particle history 
to modify it at a time. With very large distributed datasets 
for tallies, a different approach is needed. Tally data for a 
particle needs to be transmitted to a remote node where a 
section of the shared tally dataset resides, and a remote 
operation needs to be performed. That is, while the tally 
contribution is computed locally, updating the overall tally 
dataset is done remotely . The remote node holding a section 
of the tally dataset is then responsible for locking the proper 
data, performing the arithmetic to update the overaJi tally, 
and then unlocking that portion of the remote data. Thus the 
particle history portion of a Monte Carlo code may be 
performed locally, but material and geometry properties will 
be fetched from remote nodes, and results must be tallied by 
remote add-to-memory operations. 

It may be argued that much of the discussion above 
regarding modified Monte Carlo algorithms could be 
avoided by using domain decomposition methods, where 
problem spatial domains are divided among processor nodes, 
and particles move between nodes. While such approaches 
have had limited success in the past 10 years, they are 
doomed to fail on exaflop systems. The inherent parallelism 
in Monte Carlo calculations is on particle histories, not 
spatial domains. The particles travel where they will , based 
on the physics and geometry of a problem. With millions or 
billions of spatial domains, a very large fraction of the 
domains would contain no particles and remain idle. Parallel 
efficiency would approach zero. Load balancing techniques 
would likewise not be effective since they require global 
communications and then global redistribution of the particle 
workload - a serious problem for a system with millions or 
billions of cpu-cores. 

The future of Monte Carlo for the largest problems on 
exaflop systems may well involve " Monte Carlo swarms" - a 
very large number of Jight-weight Monte Carlo kernels with 
minimal memory requirements, remotely accessing 
distributed data via remote memory fetches, and performing 
tallies using remote add-to-memory operations. In this 



scheme, the problem data are decomposed and distributed, 
but rather than assigning particles to compute nodes based 
on their spatial coordinates, parallelism on particles is 
achieved by having each compute node retrieve geometry 
and cross.section data remotely from other nodes on Iy as 
needed. This approach ensures that each compute node 
follows the same number of particles and thus performs 
approximately the same amount of work, so that scal ing to 
very large numbers of processors is effective. There is no 
overhead in moving particles among processors, and the 
mapping of the particle and data processes onto the 
computing nodes is very flexible. While individual particle 
histories may take longer due to delays from remote access 
to data, the almost unlimited number of processors available 
provides massive parallelism to achieve overall large 
speedups. 

This proposed approach to Monte Carlo on future exatlop 
computing systems represents a new parad igm for parallel 
Monte Carlo. While the basic coding for Monte Carlo 
particle histories can remain largely unchanged in existing 
codes, calls to remote data access routines must be inserted 
at the proper points to remotely fetch needed data and then 
perform local operations with that data. In principle, the 
codes could monitor in real-time the portions of the remote 
datasets they have been accessing most frequently and learn 
from that information, to subsequently prefetch data in an 
anticipatory fashion . 

Fortunately, exaflop systems are 8-10 years in the future, 
so that there is sufficient time to investigate new approaches 
to massive parallelism for Monte Carlo codes. It must be 
stressed that the time to investigate such alternate 
approaches is now, not 8-10 years from now, so that 
alternate schemes will be available when the exatlop systems 
arrive. Some work has already begun22

). 
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